- Predicate Logic

- Proofs

Lecture 1
 1
 Lecture

Ch. 1 The Foundations: Logic and Proofs

- Propositional Logic
- Applications of Propositional Logic

Dr. Mohamed $\mathfrak{A} 6 d e l-\mathcal{A a l}$
\square

Propositional Equival

[^0]

1.1 Propositional Logic

Propositions : is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both.

Examples

All the following declarative sentences are propositions.

1. Washington, D.C., is the capital of the United States of America.
2. Toronto is the capital of Canada.

$$
\text { 3. } 1+1=2 \text {. }
$$

(T)
$4.2+2=3$.
(F)

The following sentences that are not propositions

1. What time is it?
2. Read this carefully.
3. $x+1=2$.
4. $x+y=z$.

The truth (T) or falsity (F) of a proposition is called truth value

We use letters to denote propositional variables

Logical Connectives and Truth Tables

simple propositions can be combined to form more complicated propositions called compound propositions.

The devices which are used to link pairs of propositions are called logical connectives
we first look at an operation which can be performed on a single proposition. This operation is called negation

If p symbolizes a proposition $\boldsymbol{p}^{-}($or $\sim p$ or $-p$ or $\neg p)$ symbolizes the negation of p

$\neg p$ "It is not the case that $p . "$

TABLE 1 The	
Truth Table for	
the Negation of a	
Proposition.	
p	$\neg p$
T	F
F	T

logical connectives

1. The conjunction

The conjunction of p and q , denoted by $\mathrm{p} \wedge \mathrm{q}$, is the proposition "p and q." $p \wedge q$

2. The disjunction

The disjunction of p and q, denoted by $p \vee q$, is the proposition " p or q." $p \vee q$

Lecture 1

- an inclusive or. A disjunction is true when at least one of the two propositions is true.
- an exclusive or. A disjunction is true when exactly one of the two propositions is true. denoted by $\mathrm{p} \oplus \mathrm{q}$
the Conjunction of Two Propositions.

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

the Disjunction of Two Propositions.

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

the Exclusive Or of Two Propositions.

p	q	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

The conditional statement $\boldsymbol{p} \rightarrow \boldsymbol{q}$ is the proposition "if p, then q." The statement $p \rightarrow q$ is called a conditional statement because $p \rightarrow q$ asserts that q is true on the condition that p holds.

- A conditional statement is also called an implication.
- "p is sufficient for q "
the Conditional Statement $p \rightarrow q$.

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

- "a necessary condition for p is $\mathrm{q} "$
- "q unless $\neg p "$
- p only if q " says that p cannot be true when q is not true.

"If I am elected, then I will lower taxes."

When p is false, q may be either true or false, because the statement says nothing about

Example

Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English

Solution

$p \rightarrow q$ represents the statement

- "If Maria learns discrete mathematics, then she will find a good job."

There are many other ways to express this conditional statement in English

- "Maria will find a good job when she learns discrete mathematics."
- "For Maria to get a good job, it is sufficient for her to learn discrete mathematics."
- "Maria will find a good job unless she does not learn discrete mathematics."

CONVERSE, CONTRAPOSITIVE, AND INVERSE

We can form some new conditional statements starting with a conditional statement $\mathbf{p} \rightarrow \mathbf{q}$

- the converse of $p \rightarrow q$ is the proposition $\mathrm{q} \rightarrow \mathrm{p}$
- The contrapositive of $p \rightarrow q$ is the proposition $\neg q \rightarrow \neg p$
- The inverse of $p \rightarrow q$ is the proposition $\neg p \rightarrow \neg q$

The following truth table gives values of the conditional together with those for its converse, inverse and contrapositive.

p	q	$p \rightarrow q$	$q \rightarrow p$	$\bar{p} \rightarrow \bar{q}$	$\bar{q} \rightarrow \bar{p}$
T	T	T	T	T	T
T	F	F	T	T	F
F	T	T	F	F	T
F	F	T	T	T	T

Example State the converse, inverse and contrapositive of the proposition 'If Jack plays his guitar then Sara will sing'.

The biconditional statement $\mathrm{p} \leftrightarrow \mathrm{q}$ is the proposition " p if and only if q ."

- "p is necessary and sufficient for q "
- "if p then q, and conversely"
- "p iff q."

Example

Biconditional $\boldsymbol{p} \leftrightarrow \boldsymbol{q}$.

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \leftrightarrow \boldsymbol{q}$
T	T	T
T	F	F
F	T	F
F	F	T

Let p be the statement "You can take the flight," and let q be the statement "You buy a ticket." Then $p \leftrightarrow q$ is the statement
"You can take the flight if and only if you buy a ticket."

Example

Consider the following propositions:
p : Mathematicians are generous.
$\mathrm{q}:$ Spiders hate algebra.
Write the compound propositions symbolized by:
(i) $p \vee \neg \mathrm{q}$
(ii) $\neg(q \wedge p)$
(iii) $\neg p \rightarrow q$
(iv) $\neg \mathrm{p} \leftrightarrow \neg \mathrm{q}$.

Solution

(i) Mathematicians are generous or spiders don't hate algebra (or both).
(ii) It is not the case that spiders hate algebra and mathematicians are generous.
(iii) If mathematicians are not generous then spiders hate algebra.
(iv) Mathematicians are not generous if and only if spiders don't hate algebra.

Truth Tables of Compound Propositions

We can use these connectives to build up complicated compound propositions involving any number of propositional variables. We can use truth tables to determine the truth values of these compound propositions

Example

Construct the truth table of the compound proposition

$$
(p \vee \neg q) \rightarrow(p \wedge q)
$$

Solution

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{q}$	$\boldsymbol{p} \vee \neg \boldsymbol{q}$	$\boldsymbol{p} \wedge \boldsymbol{q}$	$(\boldsymbol{p} \vee \neg \boldsymbol{q}) \rightarrow(\boldsymbol{p} \wedge \boldsymbol{q})$
T	T	F	T	T	T
T	F	T	T	F	F
F	T	F	F	F	T
F	F	T	T	F	F

Precedence of Logical Operators

the precedence levels of the logical operators, $\neg, \wedge, \vee, \rightarrow$, and \leftrightarrow.

- $\quad \neg p \wedge q$ namely, $(\neg p) \wedge q$, not the negation of the conjunction of p and q, namely $\neg(\mathrm{p} \wedge \mathrm{q})$.
- $p \wedge q \vee r$ means $(p \wedge q) \vee r$ rather than $p \wedge(q \vee r)$
- $\mathrm{p} \vee \mathrm{q} \rightarrow \mathrm{r}$ is the same as $(\mathrm{p} \vee \mathrm{q}) \rightarrow r$

Precedence of Logical Operators.

Operator	Precedence
\neg	1
\wedge	2
\vee	3
\rightarrow	4
\leftrightarrow	5

Logic and Bit Operations

Lecture 1

Dr. Mohamed Abdel-Aal Discrete Mathematics

A bit is a symbol with two possible values, namely, 0 (zero) and 1 (one).
Computer bit operations correspond to the logical connectives. By replacing true by a one and false by a zero in the truth tables for the operators \wedge, \vee, and \bigoplus,

We will also use the notation OR, AND, and XOR for the operators \vee, \wedge, and \oplus, as is done in various programming

Truth Value	Bit
T	1
F	0

Applications of Propositional Logic

1. Translating English Sentences

Example

How can this English sentence be translated into a logical expression?
"You can access the Internet from campus only if you are a computer science major or you are not a freshman."

Solution

Lecture 1

it is possible to represent the sentence by a single propositional variable

a : You can access the Internet from campus

$$
\begin{aligned}
& \mathrm{c}: \text { you are a computer science major } \\
& \mathrm{f}: \text { you are a freshman }
\end{aligned}
$$

this sentence can be represented as

$$
a \rightarrow(c \vee \neg f)
$$

2. System Specifications

Translating sentences in natural into logical expressions is an essential part of specifying both hardware and software systems.

Example

Express the specification "The automated reply cannot be sent when the file system is full" using logical connectives.
let p denote "The automated reply can be sent"
q denote "The file system is full."
our specification can be represented by the conditional statement

$$
q \rightarrow \neg p
$$

3. Boolean Searches

4. Logic Puzzles

5. Logic Circuits

5. Logic Networks

These are electronic devices which may be viewed as the basic functional components of a digital computer. A logic gate
three most important types of logic gates are the AND-gate, the OR-gate and the NOT-gate (or inverter).

	AND-gate			OR-gate			NOT-gate	
Circuit symbol	$\begin{aligned} & x_{1} \\ & x_{2} \end{aligned}$			$\begin{aligned} & x_{1}- \\ & x_{2}- \end{aligned}$				
Input/output table	x_{1}	x_{2}	z	x_{1}	x_{2}		x	z
	0	0	0	0	0	0	0	1
	0	1	0	0	1	1	1	0
	1	0	0	1	0	1		
	1	1	1	1	1			
Boolean expression	$z=x_{1} x_{2}$			$z=x_{1} \oplus x_{2}$			$z=\bar{x}$	

Quiz (2)

Determine whether each of the following is a tautology, a contradiction or neither:

1. $p \rightarrow(p \vee q)$
2. $(p \rightarrow q) \wedge(\neg p \vee q)$
3. $(p \vee q) \leftrightarrow(q \vee p)$
4. $(p \wedge q) \rightarrow p$
5. $(\mathrm{p} \wedge \mathrm{q}) \wedge(\mathrm{p} \vee \mathrm{q})$
6. $(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow(\mathrm{p} \wedge q)$
7. $(\neg p \wedge q) \wedge(p \vee \neg q)$
8. $(\mathrm{p} \rightarrow \neg \mathrm{q}) \vee(\neg \mathrm{r} \rightarrow \mathrm{p})$
9. $[\mathrm{p} \rightarrow(\mathrm{q} \wedge \mathrm{r})] \leftrightarrow[(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{p} \rightarrow \mathrm{r})]$
10. $[(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{r}] \oplus(\neg \mathrm{p} \vee \neg \mathrm{q})$.

Example

Give the Boolean expression for the output of the following system of gates.

Solution

The final output is therefore
$\overline{x_{1} x_{2} \oplus x_{3} x_{4}}$
Discrete Mathematics

Switching Circuits

A switch is an example of a two-state device, the two states being 'on' and 'off'. A circuit which incorporates one or more switches is known as a switching circuit.

Consider now a circuit which contains two switches A1 and A2 connected as shown in the diagram below

Switches connected to each other in this way are said to be in series.

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	0
0	1	0
1	0	0
1	1	1
$\mathrm{f}\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)=\mathrm{X} 1 \mathrm{X} 2$		

switching functions.

Two switches may alternatively be connected in parallel
$\left.\begin{array}{l}\hline x_{1} \\ x_{2}\end{array}\right] g\left(x_{1}, x_{2}\right) ~\left(\begin{array}{cc}0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ \hline\end{array}\right.$

Example

Define the switching function f for the circuit incorporating the following arrangement of switches.

Solution

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right) & =f_{1}\left(x_{1}, x_{2}\right) \oplus f_{2}\left(x_{3}\right) \\
& =x_{1} x_{2} \oplus x_{3} .
\end{aligned}
$$

Example

Define the switching function f for the circuit incorporating the following arrangement of switches.

Propositional Equivalences

We begin our discussion with a classification of compound propositions according to their possible truth values.

Tautology

A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it

p	\bar{p}	$p \vee \bar{p}$
T	F	T
F	T	T

contradiction

A compound proposition that is always false

p	q	\bar{q}	$p \wedge \bar{q}$	\bar{p}	$\bar{p} \vee q$	$(p \wedge \bar{q}) \wedge(\bar{p} \vee q)$
T	T	F	F	F	T	F
T	F	T	T	F	F	F
F	T	F	F	T	T	F
F	F	T	F	T	T	F

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called logically equivalent.

The compound propositions p and q are called logically equivalent if $\mathrm{p} \leftrightarrow \mathrm{q}$ is a tautology. The notation $\mathrm{p} \equiv \mathrm{q}$ denotes that p and q are logically equivalent.

Example

Show that $\neg(p \vee q)$ and $\neg p \wedge \neg q$ are logically equivalent.
Solution
The truth tables for these compound propositions are

Morgan's Laws.

$$
\begin{aligned}
& \neg(p \wedge q) \equiv \neg p \vee \neg q \\
& \neg(p \vee q) \equiv \neg p \wedge \neg q
\end{aligned}
$$

Lecture 1

Dr. Mohamed $\mathfrak{A} 6$ del-Aal Discrete Mathematics

TABLE 3 Truth Tables for $\neg(p \vee q)$ and $\neg p \wedge \neg q$.

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \vee \boldsymbol{q}$	$\neg(\boldsymbol{p} \vee \boldsymbol{q})$	$\neg \boldsymbol{p}$	$\neg \boldsymbol{q}$	$\neg \boldsymbol{p} \wedge \neg \boldsymbol{q}$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

Example

Show that $p \vee(q \wedge r)$ and $(p \vee q) \wedge(p \vee r)$ are logically equivalent. This is the distributive law of disjunction over conjunction.

Solution

Idempotent laws

$$
\begin{aligned}
& p \wedge p \equiv p \\
& p \vee p \equiv p .
\end{aligned}
$$

Commutative laws

$$
\begin{aligned}
& p \wedge q \equiv q \wedge p \\
& p \vee q \equiv q \vee p \\
& p \bigoplus q \equiv q \bigoplus p \\
& p \leftrightarrow q \equiv q \leftrightarrow p
\end{aligned}
$$

Associative laws

$$
\begin{aligned}
& (p \wedge q) \wedge r \equiv p \wedge(q \wedge r) \\
& (p \vee q) \vee r \equiv p \vee(q \vee r) \\
& (p \oplus q) \oplus r \equiv p \oplus(q \oplus r) \\
& (p \leftrightarrow q) \leftrightarrow r \equiv p \leftrightarrow(q \leftrightarrow r) .
\end{aligned}
$$

Absorption laws

$$
\begin{aligned}
& p \wedge(p \vee q) \equiv p \\
& p \vee(p \wedge q) \equiv p
\end{aligned}
$$

Distributive laws

$$
\begin{aligned}
& p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\
& p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)
\end{aligned}
$$

Involution law

$$
\neg(\neg \mathrm{p}) \equiv p
$$

De Morgan's laws

$$
\begin{aligned}
& \neg(p \vee q) \equiv \neg p \wedge \neg q \\
& \neg(p \wedge q) \equiv \neg p \vee \neg q
\end{aligned}
$$

Identity laws

$$
\begin{aligned}
& p \vee f \equiv p \\
& p \wedge t \equiv p \\
& p \vee t \equiv t \\
& p \wedge f \equiv f .
\end{aligned}
$$

Complement laws

$$
\begin{aligned}
& p \vee \neg p \equiv T \\
& p \wedge \neg p \equiv F \\
& \neg F \equiv T \\
& \neg \mathrm{~T} \equiv F .
\end{aligned}
$$

Some useful equivalences for compound propositions involving conditional statements and biconditional statements in Tables 7 and 8, respectively. The reader is asked to verify the equivalences in Tables 6-8 in the exercises

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p \\
& p \vee q \equiv \neg p \rightarrow q \\
& p \wedge q \equiv \neg(p \rightarrow \neg q) \\
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r) \\
& (p \rightarrow r) \wedge(q \rightarrow r) \equiv(p \vee q) \rightarrow r \\
& (p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r) \\
& (p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
\end{aligned}
$$

TABLE 8 Logical

 Equivalences Involving Biconditional Statements.$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\
& p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\end{aligned}
$$

Replacement Rule

Suppose that we have two logically equivalent propositions $P 1$ and $P 2$, so that $P 1 \equiv P 2$. Suppose also that we have a compound proposition Q in which $P 1$ appears. The replacement rule says that we may replace $P 1$ by $P 2$ and the resulting proposition is logically equivalent to Q.

Example

Show that $\neg(\mathrm{p} \vee(\neg \mathrm{p} \wedge \mathrm{q}))$ and $\neg \mathrm{p} \wedge \neg \mathrm{q}$ are logically equivalent by developing a series of logical equivalences.

Solution

$$
\begin{aligned}
\neg(\mathrm{p} \vee(\neg \mathrm{p} \wedge q)) & \equiv \neg \mathrm{p} \wedge \neg(\neg \mathrm{p} \wedge q) & & \text { by the second De Morgan law } \\
& \equiv \neg \mathrm{p} \wedge[\neg(\neg \mathrm{p}) \vee \neg q] & & \text { by the first De Morgan law } \\
& \equiv \neg \mathrm{p} \wedge(\mathrm{p} \vee \neg \mathrm{q}) & & \text { by the double negation law } \\
& \equiv(\neg \mathrm{p} \wedge p) \vee(\neg \mathrm{p} \wedge \neg q) & & \text { by the second distributive law } \\
& \equiv \mathrm{F} \vee(\neg \mathrm{p} \wedge \neg q) & & \text { because } \neg \mathrm{p} \wedge \mathrm{p} \equiv \mathrm{~F} \\
& \equiv(\neg \mathrm{p} \wedge \neg q) \vee \mathrm{F} & & \text { by the commutative law for disjunction } \\
& \equiv \neg \mathrm{p} \wedge \neg \mathrm{q} & & \text { by the identity law for } \mathrm{F}
\end{aligned}
$$

Consequently $\neg(p \vee(\neg \mathrm{p} \wedge q))$ and $\neg \mathrm{p} \wedge \neg q$ are logically equivalent.

Example

Prove that $(\neg p \wedge q) \vee \neg(p \vee q) \equiv \neg p$

$$
\begin{aligned}
(\neg p \wedge q) \vee \neg(p \vee q) & \equiv(\neg \mathrm{p} \wedge \mathrm{q}) \vee(\neg \mathrm{p} \wedge \neg \mathrm{q}) & & \text { (De Morgan's laws) } \\
& \equiv \neg \mathrm{p} \wedge(\mathrm{q} \vee \neg \mathrm{q}) & & \text { (distributive laws) } \\
& \equiv \neg \mathrm{p} \wedge \mathrm{~T} & & \text { (complement laws) } \\
& \equiv \neg \mathrm{p} . & & \text { (identity laws) }
\end{aligned}
$$

Quiz (3)

Prove each of the following logical equivalences

1) $\quad \mathbf{p} \wedge[(\mathbf{p} \vee \mathbf{q}) \vee(\mathbf{p} \vee \mathbf{r})] \equiv \mathbf{p}$.
2) $\quad \mathbf{q} \wedge[(\mathbf{p} \vee \mathbf{q}) \wedge \neg(\neg \mathbf{q} \wedge \neg \mathbf{p})] \equiv \mathbf{q}$.

Propositional Satisfiability

A compound proposition is satisfiable if there is an assignment of truth values to its variables that makes it true.
when the compound proposition is false for all assignments of truth values to its variables, the compound proposition is unsatisfiable.

When we find a particular assignment of truth values that makes a compound proposition true, we have shown that it is satisfiable; such an assignment is called a solution of this particular satisfiability problem.

However, to show that a compound proposition is unsatisfiable, we need to show that every assignment of truth values to its variables makes it false.

Example

Determine the satisfiability of the following compound propositions:

1. $(\mathrm{p} \vee \neg \mathrm{q}) \wedge(\mathrm{q} \vee \neg \mathrm{r}) \wedge(\mathrm{r} \vee \neg \mathrm{p})$

Note that $(p \vee \neg q) \wedge(q \vee \neg r) \wedge(r \vee \neg p)$ is true when the three variable p, q, and r have the same truth value

Hence, it is satisfiable as there is at least one assignment of truth values for p, q, and r is true and at least one is false that makes it true
2. $(\mathrm{p} \vee \mathrm{q} \vee \mathrm{r}) \wedge(\neg \mathrm{p} \vee \neg \mathrm{q} \vee \neg \mathrm{r})$

Similarly, it is satisfiable as there is at least one assignment of truth values for p , q , and r that makes it true.

$$
\text { 3. }[(p \vee \neg q) \wedge(q \vee \neg r) \wedge(r \vee \neg p)] \wedge[(p \vee q \vee r) \wedge(\neg p \vee \neg q \vee \neg r)]
$$

For the first to be true, the three variables must have the same truth values, and for the second to be true, at least one of three variables must be true and at least one must be false. However, these conditions are contradictory. From these observations we conclude that no assignment of truth values makes it true. Hence, it is unsatisfiable.

[^0]: - Propositional Equivalences

